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Oscillatory zoning caused by oscillating surface relaxations
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Abstract. Oscillatory zoning is a spatial variation in the composition of minerals. It has been observed
in many different minerals and a variety of mechanisms have been proposed to explain it. We propose
an equilibrium model of oscillatory zoning in which the variations in composition stabilise a ferroelastic
phase. This results in a sinusoidal variation in composition. We expect that this mechanism could account
for oscillatory zoning found in minerals with oscillatory surface relaxations.

PACS. 61.72.-y Defects and impurities in crystals; microstructure – 61.72.Ss Impurity concentration,
distribution, and gradients – 81.10.-h Methods of crystal growth; physics of crystal growth

1 Introduction

Oscillatory crystal zoning has been observed in many min-
erals that have crystallised from melts and from aque-
ous solutions. Shore and Fowler [1] give a list of miner-
als in which oscillatory zoning is known to occur. It has
been produced experimentally [2] in the (Ba,Sr)SO4 sys-
tem. The phenomenon consists of a variation in chemical
composition that may be regular, stochastic or chaotic.
Various mechanisms have been suggested to explain this
phenomena. One class of explanations involves repetitive
changes in the external environment of the crystallising
mineral. Models based on these ideas have been put for-
ward to explain zoning in plagioclase feldspar [3,4], and
carbonates [5,6]. Another explanation uses out of equilib-
rium, non-linear models of crystal growth and diffusion in
the boundary layer between the crystal growth front and
the bulk liquid out of which the crystal is growing. Such
models have been invoked to explain zoning in carbon-
ates [7] and in plagioclase feldspar [8]. Positive and nega-
tive feedback in these models can produce oscillations. It is
known that surface relaxations can affect crystal growth
morphologies [9]. In this paper we propose a model in
which compositional variations interact with an oscilla-
tory surface relaxation to stabilise a ferroelastic phase
transition in the crystal. We consider how to incorporate
compositional variations into the (one-dimensional) free
energy functional of a crystal with an oscillatory surface
relaxation. We show that the existence of the extra degree
of freedom associated with compositional variations may
destabilise the crystal with respect to a ferroelastic transi-
tion. The new equilibrium state of the crystal has in phase
sinusoidal oscillations of the strain and composition fields.
This oscillatory zoned state is derived explicitly from a free
energy functional that is convex for all Fourier components
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of the strain, but shows instability when the composition
is allowed to relax as well. We note in passing that these
results may also be applicable to polytypes. The choice of
polytype of a growing crystal depends on factors including
the presence of impurities. Vodakov et al. [10] and Stein
and Lanig [11] discuss this for the polytypic material SiC
as do Jain and Trigunayat [12] and Salje et al. [13] for the
polytypic material PbI2. In the application of this model
to oscillatory zoning we write a free energy functional of
strain coordinates and consider how allowing composition
variations modifies it. To apply the model to polytypism
one would have to write a free energy functional in terms
of an order parameter and consider how compositional
variations would alter the form of the functional.

2 A one-dimensional system
with an oscillating surface relaxation

A surface relaxation is a strain field, which decays from
a non-zero value at the surface of a crystal to zero in the
bulk of the crystal. The bulk configuration is taken as
the reference state for strains. Physically the origin of a
surface relaxation lies in the fact that atoms in surface
layers are not in the same environment as atoms in bulk
layers. Therefore the configuration of surface atoms that
minimises the free energy of the crystal is not the same as
the ideal configuration of atoms in the bulk layers. Long
range interactions between atoms insure that the strains
generated at the surface affect other layers. Without these
long range interactions the relaxation would be restricted
to the surface layers.

To produce an oscillatory surface relaxation in a model
of a crystal with harmonic interactions between atomic
planes requires interactions between 1st, 2nd and 3rd
nearest neighbour planes [14]. In a continuum model
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Fig. 1. An oscillatory surface relaxation. The parameters of
the above free energy are taken as a = 1, α = 1, β = 1,
λ = 1.393, µ = 0.995, ε0 = 1, ε′0 = 1 see equation (1). λ and µ
are chosen to give Ki = 0.1 and Kr = 1 see equation (2).

this gives us a free energy functional of the strain as shown
in equation (1).
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There is a bulk term and a surface term. The system is
symmetrical about z = 0: there is another surface at z =
−L. The ideal surface strain and gradient in the strain
are non-zero whereas in the bulk ideally the strain is zero.
The strain relaxes from its surface values to its bulk value
(zero) in an oscillatory manner. Figure 1 shows the strain
profile of an oscillatory surface relaxation. The oscillation
has wavenumber Ki and the exponential decay has decay
constant Kr. In terms of these two constants, λ and µ are
given by:
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Obviously a system with such a free energy functional will
be unstable if λ is too large. We can calculate a stability
condition on λ by considering the bulk free energy per
unit length
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For the system to be stable against ferroelastic transitions
the minimum value of the bulk free energy must occur
when ε = 0. Clearly this gives us f = 0 also. If the sys-
tem can lower it’s free energy below zero by developing
an oscillatory strain then the system will undergo a fer-
roelastic transition. To determine a stability condition on
λ we set ε = cos(kz) in the equation for f and average
over a cycle of the oscillations. This gives us f as a func-
tion of k, we find the non-zero value of k that minimises

f : kmin. If f(kmin) is positive then this is not an absolute
minimum, the absolute minimum is ε = 0 and the system
is stable. If however f(kmin) is negative then the system
is unstable, since it can lower it’s free energy by develop-
ing an oscillatory strain. These considerations give us the
stability condition λ <

√
2µ.

3 Surface relaxations interacting
with composition variations

To understand how to incorporate a composition variable
ξ into the above free energy consider a substitutional solid
solution AnB1−n in contact with a melt or solution. The
solid has an ideal composition which we label as ξ = 0.
This composition must correspond to a minimum in the
free energy of the system. A positive ξ means the solid so-
lution contains an excess amount of A, a negative ξ means
that the solid solution contains too little A. The relevant
free energy contains a term quadratic in ξ with a minimum
at ξ = 0. A change in composition causes a change in the
lattice parameters of the solid solution. To a good ap-
proximation this change will be linear in ξ (Vegards law).
With the strain variable ε representing deviations from
the reference configuration where the lattice parameters
are those of the ξ = 0 solid solution we have ε ∝ ξ. For
simplicity we scale ξ so that the constant of proportional-
ity is one. Now the minimum in the elastic strain energy is
about ε = ξ rather than about ε = 0. Incorporating these
two features into our free energy functional gives:
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The first term in the integral shows that the minimum
in the free energy of the system is ξ = 0. The second
term shows that altering the composition of the system
alters the lattice parameter. If ξ is held equal to zero (or
any other constant value) then the stability condition for
this system is the same as the previous one. However if ξ
is allowed to oscillate at the same frequency as the strain
then the stability condition derived in the previous section
is weakened to

λ <

(
4b
a+ b

) 1
4

µ.

That means that a system that is stable against purely fer-
roelastic transitions may be unstable against a transition
involving both variations in the strain and in composition.
This means that for materials of this sort oscillatory crys-
tal zoning represents an equilibrium state rather than the
result of growth kinetics.
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4 Growth of an oscillatory zoned crystal

Strain relaxations take place at the speed of sound, which
can be considered instantaneous on the timescale of crys-
tal growth. Composition relaxation takes place by diffu-
sion, which can be an extremely slow process. Therefore in
calculating the strain and composition profiles of a crys-
tal we minimise the free energy functional completely with
respect to the strain variable ε but we only allow the com-
position variable ξ to vary in the surface layers. In the
bulk of the material ξ remains fixed. This means we have
to calculate the composition profile in a series of steps. In
each step the crystal grows (in one dimension) by length
δ. The composition profile in the surface layers takes its
equilibrium shape. The composition profile in the rest of
the crystal remains in the same shape it had in the previ-
ous step.

The boundary conditions are
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The surface layers are characterised by
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and the bulk layers follow the equation
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To solve these equations numerically we converted them
to finite difference equations. The surface layer was taken
to be 2π/Ki one wavelength in the purely elastic (ξ = 0)
oscillatory relaxation i.e. Ki is calculated from λ and µ
and equation (2). The system was broken up into a grid
of size δ = 2π/10Ki. The equations were solved repeatedly
as a matrix inversion problem, each time the size of the
system was increased by one grid unit. For a sufficiently
low value of b the results show oscillations in composition
of increasing amplitude. These oscillations grow in ampli-
tude without limit in these simulations because there are
no higher order terms e.g. c

4

(
∂ε
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)4
in the free energy func-

tional to prevent them from growing indefinitely. In a real
crystal the oscillations would saturate at finite amplitude
due to such higher order terms. Examples of the compo-
sition and strain profiles obtained are given in Figures 2
and 3. Here the parameters are chosen so that the system
is stable against purely elastic transitions but unstable
against coupled elastic and composition transitions.

5 Conclusions

The above results show that allowing a system with an os-
cillatory surface relaxation an extra degree of freedom as-
sociated with composition variations can make it unstable

Fig. 2. Variation in composition across a growing crystal. The
composition is free to vary in the surface layers but is fixed in
the bulk while the crystal is grown. Higher order terms in the
free energy will cause these oscillations to saturate out at some
finite amplitude. This is an example of composition variations
driving a crystal through a ferroelastic phase transition. The
parameters of the free energy functional, equation (4), are a =
1, b = 10, α = 1, β = 1, ε0 = 1, ε′0 = 1, λ = 1.393, µ = 0.995.

Fig. 3. Strain profile produced by the defect concentration
profile shown in Figure 2.

with respect to a state in which the oscillatory relaxation
propagates through the bulk of the crystal, pinned in place
by an oscillating composition. This is clearly an example of
oscillatory zoning, with a sinusoidal variation in impurity
concentration. Unlike many of the models of oscillatory
zoning the oscillating composition is an equilibrium state
rather than the result of non-equilibrium growth.
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